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ABSTRACT

Let V = {P1, P,,...,P,} be aset of points in either 2D or 3D space and let {q1, g2, - . ., ¢gn } be scalar values associated
with the points. This paper presents a method for interpolating values of the scalar variable ¢ at any position X in
the convex hull of V. The interpolant consists of the sum of the linear interpolant for a simplex T' that contains X
and a least squares estimate of the higher order terms. The least squares fit is made through the cloud of m points
in V that are closest to X and are not already vertices of T'. Conditions that determine the invertibility of the least
squares system are examined and related to geometric constraints on the positions of points in the cloud.
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1. INTRODUCTION

Data interpolation from a discrete set of points in ei-
ther 2D or 3D space is required in many situations
that arise when solving partial differential equations
on a mesh of points. Time dependent problems, for
example, often require the projection of a solution at
a given time instant from one mesh onto a new, mod-
ified mesh that has been adapted for the computation
at the next time step. Another example arises with the
overset method which uses several overlapping meshes
to represent a given domain with a consequent need
to transfer the solution data between the component
meshes. Graphical interpretation and feature detec-
tion for large data sets such as flowfield measurements
also relies on accurate interpolation from scattered
data [1]. If the donor mesh possesses a high degree of
regularity (i.e. with a locally well defined set of coor-
dinate directions) then interpolation by tensor splines
or transfinite interpolation is possible. If the donor
mesh consists of arbitrarily placed points, however, it
will be necessary to devise data interpolation or re-
construction schemes that do not make any a prior:
assumptions about the underlying mesh geometry.

This problem has received much attention among pro-
tagonists of meshless methods [2, 3, 4, 5, 6] (also known
as hp clouds and partition of unity methods). Data

estimation is typically carried out by a moving least
squares method [7, 8] which assigns an influence func-
tion to each mesh point. The domain of influence,
over which this function is non-zero, extends a finite
distance from the mesh point. Data reconstruction at
any given position in space is then achieved by sum-
ming the contributions from of all domains of influence
that enclose the particular position.

The method proposed in this paper starts from a rep-
resentation of the interpolated value as a linear inter-
polant over a simplex whose vertices are points in the
donor mesh. The linear interpolant is then augmented
by a higher order estimate that is obtained from near-
est point neighbors outside this simplex. Data pro-
jection is specifically designed to interpolate the exact
value at each donor mesh point.

2. PROBLEM STATEMENT AND

FORMULATION
Given a set of randomly distributed points
V. = {Pi,P»,...,P,} with associated scalar val-
ues {q1,q2,...,qn} interpolate a value g(x) at any

given position x within the convex hull of V. It is
required that g(x;) = ¢;, i = 1,---,n where x; is the
position vector associated with point P;.



Let T be a containing simplex whose vertices are
points in V and such that T contains the point x.
If there is a triangulation associated with the donor
mesh points V' then this can be searched to find the
unique simplex containing x. If no triangulation has
been defined, a containing simplex can be constructed
by searching through the point cloud until a suitable
set of vertices has been found. In either case, a fast
search procedure (e.g. use of an octree data structure
[9]) will enable the closest point P ¢ V to be found in
O(log m) time where n = card V. If a triangulation
of V' has been defined then it is possible to find the
containing simplex in an additional O(1) time. If no
a priors triangulation of the convex hull of V' is given
then one may first create a tringulation of V', a proce-
dure that is reasonable if the set V of mesh points is
not too large. If n = card V is extremely large and the
number of positions at which interpolated values are
needed is relatively small, it may be preferable to cre-
ate a containing simplex for each interpolated position
x by a gift wrapping procedure.

Let
q(x) = quin(x) + f(x) (1)

where ¢j;, (x) is the interpolant obtained by a linear fit
through the vertices of the containing simplex T'. The
function f(x) is a higher order estimate of the error
between the true function value and the linear inter-
polant. This estimate is obtained from a least sqaures
fit through the nearest neighbors among the point set
V. The interpolation can be carried out to arbitrar-
ily high order. Although continuity of the derivatives
is not guaranteed, tests of the reconstruction proce-
dure indicate that the requisite degree of smoothness
is obtained in practice.

2.1 Linear Interpolant

Considering first the planar case, let the containing
triangle T be defined by the vertices Ri, Rz, R3 ¢ V
and let X be the point with coordinates (x,y) at which
an interpolated value g(z,y) is required. Let R; have
coordinates (zj,y;), j = 1,2,3 and define the lin-
ear basis functions ¢1, 2, s such that ¢;(z;,y;) =
dij, %, 7 = 1,2,3 where d;; is the Kronecker delta

_J) L =y
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The basis functions correspond to the barycentric
coordinates associated with the triangle 7. Thus
¢1(z,y) = A1/A where (see figure 1) A, is the area
of triangle X R3R>, with A» and Ag defined in a simi-

lar way, and A = A; + Az + A3 is the area of triangle
R1R3R>. The linear interpolant is then given by

Qin (T, y) = q11(x,y) + qad2(x,y) + g3¢a(z,y) (3)

Since the linear interpolant must be exact if g(z,y) is
a constant, it follows that

$1(z,y) + ¢2(z,y) + ¢a(z,y) = 1 (4)

Similarly, the requirement that ¢(z,y) = =z and
g(z,y) = y be represented exactly by the linear in-
terpolant leads to the equations

z1d1(x,y) + x2d2(x,y) + 3gps(z,y) =2 (5)

and

np1(x,y) + yada(x,y) + yspa(x,y) =y (6)

It follows that explicit expressions for the basis func-
tions can be determined by inverting the system of
equations

1 1 1 o1 1
( r1 T2 T3 ) ( b2 ) = ( xz ) (7)
Y1 Y2 Y3 o3 Y

The determinant of the above matrix equals twice the
area of triangle RiR3R>. Thus, the basis functions
are well defined provided the area of the triangle is
nonzero.

R

Figure 1: Definition of areas A;, A and A3 associated
with the point X.

2.2 Estimation of Quadratic Error Terms

In order for the interpolant to remain exact at the
vertices of T', it is necessary to obtain an estimate of



the quadratic error f(x,y) that is zero at each vertex
of T (i.e. such that f(zj,y;) =0, j = 1,2,3). This
can be achieved in terms of the linear basis functions
by representing the error as

f(x,y) = ad1¢2 + bd2gs + cPadr (8)

Since each basis function is a linear function of z and y
it follows that any product of two basis functions must
be a quadratic function of z and y. The three pairs of
basis functions that appear in equation (8) represent
the three distinct pairs which are identically zero at
each vertex of T. To see this, note that ¢1 = 0 on
the extended edge R3R»> while ¢ = 0 on the extended
edge R1 R3 so that ¢1¢2 is zero at each vertex of T'. In
a similar way, it can be seen that ¢2¢3 and ¢3¢ are
zero at each vertex of T'. It follows that f(z;,y;) =
0, 7=1,2,3.

Now let Sj ¢ V—{Ri,R2,R3}, j = 1,...,m be the
next m donor mesh points that are closest to X. Let
¢i(j) represent the value of ¢; at the data point Sj.
Similarly, let q(j), respectively g (j), be the values
of the data, respectively linear interpolant, at the data
points S;, j =1,...,m. Define the matrix

d1(D)p2(1)  P2(L)ga(1)  #3(1)é1(1)
$1(2)$2(2)  92(2)93(2)  #3(2)$1(2)

p1(m)pa(m)  ¢2(m)ps(m)  ¢3(m)di(m)
9)
The coefficients a,b,c are determined by computing
the least squares approximation of the error terms for
the m extra points. Thus, the coefficients are found
by inverting the 3 x 3 system [10]

B"Ba=B"w (10)
where a = (a,b,¢)” and

w = : (11)

4(m) —quin (m)

The interpolation procedure generalizes in a straight-
forward manner to 3D. In this case,

Q(:E:y:z) :qlin($7y7z)+f($7y7z) (12)
and

Qin(z,y,2) = @ d1(2, Y, 2) + @202(z,y, 2) (13)
+q3¢3($7 Y, Z) + q4¢4($7 Y, Z)

where ¢; (z,y,2), i = 1,2, 3,4 are the linear basis func-
tions associated with the tetrahedron T that contains
the point X. In an analogous manner, explicit expres-
sions for these four linear basis functions can be found

by inverting the system of equations

1 1 1 1 b1 1
r1 T2 T3 T4 o2 _| = (14)
Y1 Y2 Y3 Y4 ®3 Yy
Z1 Z2 Z3 Z4 04 z

The quadratic error is now represented as

f(z,y,2) = ag1d2 + bp1¢3 + ch1¢4 (15)
+dpaps + epapa + fh3pa

By a similar argument to that given earlier, it can be
seen that the six pairs of basis functions appearing in
equation (15) are all zero at each of the four vertices of
the tetrahedron T. The least squares approximation
leads to the system,

C"Ca=C"w (16)

where C' is an m X 6 matrix, each of whose rows is
formed from the six distinct products of two basis func-
tions evaluated at one of the m points S;. The vector
a is the column vector containing the 6 coefficients
a,b,c,d,e, f and w is defined as before. Inversion of
the 6 x 6 matrix CT C is required to obtain the coeffi-
cients.

2.3 Higher Order Interpolants

The procedure generalizes in a natural way to permit
cubic and higher order estimation of the error terms.
In the planar case, the error up to and including third
order terms is given by

Flz,y) = ag1d3 +bp193 + cp207 + dp2¢i
Y tedsd? + fdsdd + gb1dacs

where the seven triple products of basis functions are
the set of distinct products that are cubic in z and y
and are identically zero at the vertices of the triangle
T. Determination of the coefficients by least squares
leads to a 7 x 7 system of equations to invert. In a
similar way one can estimate the error terms up to
fourth order accuracy with an expression for f(z,vy)
that is formed as a linear combination of the 12 distinct
quadruple products of the basis functions that are zero
at each vertex of T'. It follows in this case that there
are 12 coefficients to be computed by solving a 12 x 12
system of equations. Third order and fourth order
accuracy in 3D requires the inversion of a 16 x 16 and
a 31 x 31 system respectively.

(17)

3. SIZE OF POINT CLOUD

The number m of mesh points Sj,7 = 1,---,m that
are used to determine the least squares estimate should
not be too large in order to maintain a compact sup-
port for the evaluation of the error term. Too few



points, on the other hand, will result in a covari-
ance matrix BTB (or CTC in 3D) that is singu-
lar. Although the least squares system of equations
is consistent and therefore always has a solution, a
non-singular covariance matrix ensures that the least
squares solution is unique.

In principle, one could handle the singular case by
choosing the minimum length solution, or which is
equivalent, by taking the pseudo inverse a = Btw
[11]. Evidently, m cannot be larger than n = card V
so that the pseudo inverse should be used if the point
set V is extremely small and one is, in effect, trying to
interpolate through an insufficiently large set of data
points. In general, however, the size of V' will not be
a limitation and the number m of data points used in
the least squares fit should be chosen to be sufficiently
large to ensure invertibility of the covariance matrix.

In order to determine conditions under which the co-
variance matrix BT B will be singular it should first
be noted that BT B has the same null-space as B [10].
This follows from the observation the nullspace of B
is contained in the nullspace of BT B and vice versa.
First Bx = 0 = B'Bx = 0 = N(B) c N(BTB).
Conversely, BTBx = 0 = xT"BTBx = 0 so that
|Bx|> = 0 = Bx = 0. Hence N(BTB) C N(B)
and these two inclusions show that N(B” B) = N(B).

It follows that rank BT B = rank B and the number of
linearly independent columns of BT B is therefore the
same as the number of linearly independent columns
of B. For the planar case with quadratic error estima-
tion, the matrix B is given by equation (9) and hence
invertibility of BT B requires m > rankB = 3.

3.1 Condition for a Diagonal Covariance
Matrix

An example for which m = 3 is sufficient is shown in
figure 2. The point S lies on the extended edge R2> R
so that ¢3(1) = 0. Similarly, ¢1(2) = 0 since S lies on
the extended edge RsR2 and ¢»(3) = 0 since Ss lies
on the extended edge R1R3. Hence

#1(1)p=(1) 0 0
B = ( 0 $2(2)¢3(2) 0 )

0 0 #3(3)91(3)
(18)
and
( T(L)g3(1) 0 0 >
B"B = 0 5(2)83(2) 0
0 0 3(3)$1(3)
(19)

In this particular case the matrix BT B will be diag-
onal, a property that does not hold unless the three
extra data points Si,S2, S3 all lie on extended edges
of the containing triangle 7. More generally, if the

point S;, j = 1,---,m lies on the extended edge of
the containing triangle T' opposite vertex R; where ¢
=1, 2 or 3 then ¢;(5) = 0. Hence each row of B has
two zero entries and just one non-zero entry. It follows
that the columns of B are orthogonal so that BT B will
be diagonal.

Remark 1: If every point Sj, 7 = 1,---,m lies on
an extended edge of the containing triangle T then
BT B will be diagonal. If, in addition, there is at least
one point S; on each of the three extended edges then
BT B will be invertible.

Figure 2: A case when three points suffice for invertibil-
ity.

3.2 A Condition when Three Extra Points
is Insufficient

The more interesting situation, or at least the situa-
tion of greater concern, is associated with BT B being
singular. Figure 3 illustrates a situation when three
extra points Si,S2,S3 are not sufficient to make B
and hence BT B nonsingular. If two data points, say
S1 and Ss, lie on the same extended side, say RaR1,
then ¢3(1) = 0 and ¢3(2) = 0. It follows that

P1(1)pa(1) 0 0
B= ( 61(2)d2(2) 0 0 )
$1(3)$2(3)  $2(3)p3(3)  ¢3(3)91(3) 0
20

Hence B and therefore BT B have rank 2. The defi-
ciency in rank occurs as a result of the fact that the
linear basis function ¢; is zero on the extended edge
of T that is opposite vertex R;.

In general, if there are m extra data points of which
the first m — 1 lie on an extended edge of T', say R2R:



so that ¢3(j) =0, j=1,- — 1 then
$1(1)p2(1) 0 0
$1(2)$2(2) 0 0
B = :
d1(m — L)pa(m — 1) 0 0
$1(m)g2(m) $2(m)ps(m)  p3(m)p1(
21)
and
B'B=(c1 cz2 c3) (22)

where the columns are given by

Z¢%¢§

c1 = ( ¢1(m)ga(m)>ps(m) ) (23)
¢1(m)*pa(m)ps(m)
1(m)¢ 2( )%¢s(m)

C2 = ( ¢2( ) ( )2 > (24)
¢1(m)da(m)ps(m)*
¢1(m)*pa(m)ps(m)

c3 = ( (m)¢2( )¢ (m ? > (25)

¢1(m)*p3(m)*

As expected the covariance matrix BT B has rank 2
since columns 2 and 3 are linearly dependent.

Figure 3: A example when three points do not suffice
for invertibility.

We summarize this result as

Remark 2: The covariance matrix BT B will be sin-
gular if more than m — 2 of the m extra data points
Sj,j=1,---,mlie on one extended edge e of the con-
taining triangle T

3.3 A Condition for Matrix B to have lin-

early dependent columns

It is also possible for B and hence BT B to be singular
if any two columns of B are linearly dependent. This

can only arise if all m points lie on a line through a
vertex of the containing triangle T'. This possibility is
illustrated in figure 4. Suppose, for example, that the
extra data points all lie on a straight line L through a
vertex of the containing triangle 7. In particular, as
shown in figure 4, let R3 be the vertex through which
L passes. Then, if S is any data point on L, it follows
that

A A
$1(8) =, $208)=—7  (26)
with 1 1
Al = §h1l1, A2 = §h2l2 (27)

Here, A; is the area of triangle R2SR3, As is the area
of triangle R3SR:, l1 is the length of edge R2R3, I
is the length of edge R3R: and hi, respectively ha, is
the length of the perpendicular from S to the extended
edge R2R3, respectively R3R;1. Now let § be the angle
between line L and the extended edge R3R; and let ¢
be the angle between L and the extended edge R>R3.
It follows that

hi1 = d siny and ho = d sinf (28)
Hence
62(S) = a1 (S) where a = 2509 (99
2 - ! W o lysiny

Since a does not depend on the distance d of S from
the vertex Rg, this relation must be true for any po-
sition S on L. It follows that the second and third
columns of B are linearly dependent so that BT B will
be singular.

Figure 4: Colinearity condition for a rank deficient ma-
trix.

Remark 3: The matrix BT B will be singular if the m
points S;, j = 1,---, m are colinear and lie on a line
passing through a vertex of the containing triangle T'.

For a general arrangement of points it is unlikely that
these pathological situations will arise. It is possi-
ble, however, that the covariance matrix BT B will be
badly conditioned if the number m of extra data points



is small and the arrangement of donor mesh points
has a lattice organization as illustrated in figure 9. In
practice, a well conditioned covariance matrix is usu-
ally assured by taking m equal to twice the number of
columns in the matrix B. Since the system of normal
equations (eqns. (10) or (16)) is non-negative definite,
inversion can be accomplished by a Cholesky decompo-
sition and the determinant and/or condition number
of BT B monitored to detect singular behavior. If this
does occur, further data points can be acquired until
the system of equations does become well conditioned.

y
S, S Rs
X
1 C R,
X
S S, S

Figure 5: Mesh for the nine point test example.

4. QUADRATIC INTERPOLANTS FOR
A NINE POINT MESH

The mesh shown in figure 5 contains nine points,
eight placed around the perimeter of a square of side
length 2. The remaining point R; lies at the center
of the square which is taken to be the origin. Let
q take the value 1 at the origin and the value zero
at each of the eight perimeter points. For the inter-
polation position X the containing triangle has ver-
tices R1(0,0), R2(1,0) and R3(1,1) with the data val-
ues q1 = 1,g2 = g3 = 0. The basis functions are

dr(z,y) =1—=, ¢2(x,y) =x—y, ds(z,y) =y (30)
whence

Qin(z,y) =1 -2 (31)

The linear interpolant over the other seven triangles is

easily obtained and is displayed for the entire mesh in
figure 6.

If the nearest three extra points Si1, S and S3 are used
to obtain the quadratic correction we find that

Ba=w (32)

-1 -1 1 -1
(0 -2 0>,w=<0> (33)
1 -1 -1 -1

where

B

Figure 6: Linear interpolant for nine point test example.

In this case rank B = 2 so that the system of normal
equations (10) is singular. Using Householder trans-
formations [11] we obtain

Ry =g (34)
where R = QBK and R has the form
_ Rll 0
re(% 1) -

where Ri; is a 2 x 2 upper triangular matrix. ¢ and
K are orthogonal matrices and y = K”a, g = Qw.
For this particular example

0
_( 2 0 - «
Ru—( 0 Vg),g— \/§2 (36)
Vs
and
1L 9 L
V2 V2
K = 0 1 0 (37)
L 0 =+
V2 V2

Let y” = (y1,¥2,y3). Solving the system

(2 5)(2)-(3) =

gives y1 =0, y» = % To obtain the pseudo inverse we
set y3 = 0 and then compute a = Ky to give

a=c=0, b= (39)

1
3
Substituting the values of these coefficients into equa-
tion (8) and using the linear basis functions given in
equations (30) we find that the quadratic correction
based on the three nearest extra points is

folay) = 3u(z — ) (40)



and the corresponding second order interpolant is

wey=1-ctgye—y) @)

The corresponding interpolants for the remaining
seven triangles can be easily found by symmetry con-
siderations. Figure 7 shows this interpolant for the
entire mesh.

Figure 7: Quadratic interpolant using three extra points
and the pseudo-inverse.

When four extra points S1, S2, S3 and S4 are used we
find that

-1 -1 1
0 -2 0

B = 1 -1 —1 (42)
—4 -2 2

which has rank 3 so that BT B is invertible. In this
case we have

a=c=_, b= (43)

leading to the quadratic interpolant over triangle
R1R>R3 given by

2 1
aley) =1—z+3a(l—2) + zyle—y)  (49)
The corresponding interpolant g¢s(z,y) based on five
extra points has the coefficients

13 2 15

z c:ﬂ

= — = 4
ViRdal (45)

a
while the interpolant gs(z,y) based on all six extra
points has the coefficients

48 15 54
a—ﬁ,b—ﬁ,C—ﬁ (46)

The interpolant g4(z,y) based on four extra points is
displayed for the entire mesh in figure 8.

Figure 8: Quadratic interpolant using four extra points
for the least sqares fit.

e Datapoints

y O Interpolation points

Figure 9: Point set V' (filled in circles) and interpolation
positions (open circles).

5. A SMOOTHLY VARYING TEST CASE

A simple test case, using a smoothly varying func-
tion to define the data values, illustrates the efficacy
of the procedure for different orders of interpolation.
A donor mesh (see figure 9) was defined by a regu-
lar lattice of points covering a square whose sides have
unit length. The minimum spacing, or lattice width, h
between mesh points was varied in order to investigate
how well the accuracy of the interpolation schemes im-
proved as h was reduced in size. The data values as-
signed to the mesh points were given by

q(z,y) = (smgz sing )? (47)

a function that varies smoothly between 0 and 1.

Interpolated values were obtained at a series of points
along a line that ran across the mesh and such that
the interplation positions were as far as possible from
the donor mesh points. The interpolated values were
compared with the exact values to determine the inter-
polation error at each sample point and the root mean



Lattice width h

1st, 2nd, 3rd and 4th order rms error for 2D Test Case
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Figure 10: Error versus mesh width h for the 2D test
case.

square (rms) value of the error at all sample points was
computed. Figure 10 shows the rms error versus mesh
width A for the linear interpolation as well as for sec-
ond order, third order and fourth order interpolation.
The rate at which the error diminishes as h becomes
smaller shows clearly how the higher order interpola-
tion schemes provide superior performance albeit by
requiring the inversion of larger matrix systems than
the lower order schemes.

A similar comparison in 3D was made for a three di-
mensional lattice of points on the unit cube whose data
values were given by

q(z,y) = (sinzx sinzy sinzz)2 (48)

2 2 2
The root mean square error versus mesh width A for
the linear interpolation as well as for second order,
third order and fourth order interpolation is shown in
figure 11. The trend of error reduction versus lattice
spacing h is similar to that demonstrated for the 2D
case in figure 10.

6. INTERPOLATION THROUGH A
STEP FUNCTION

A more severe test is provided by data values which
represent a discontinuous jump. In the 2D case the

1st, 2nd, 3rd and 4th order rms error for 3D Test Case
0.1
Lattice width h

L S 4
* g
X * 2}
X ¥ [a]

I I I I I I I I 3
— o =l 1=l [t} © ~ @ =} o©°

o o =] =1 =1 =) =3 =3 —

o d 8 S ?
S} S ) ) @ [ [} )
S 3 1 — - 1 1 1
o
Jou3

Figure 11: Error versus mesh width h for the 3D test
case.

following step function was therefore used to define the
data values ¢ at each lattice point on the unit square.
o y):{ 1 ife<

’ 0 ifz>

A cut through the interpolating surface along the line
y = 0.5 is shown in figure 12 over part of the x axis
for data defined on the donor mesh at a lattice spacing
of h = 0.025. The linear interpolant decreases from a
value of 1 at = 0.475 to zero at x = 0.5. The sec-
ond order interpolant displays an overshoot ahead of
the step jump and an undershoot after the step jump
whose magnitude is around 10% of the step height.
The overshoots extend roughly one half of the lattice
spacing h on either side of the discontinuity. (Note
that the symbols shown on the curves in figures 12
and 13 do not represent actual mesh positions which
are much more widely spaced and at which the func-
tion values q(z.y) are, of course, interpolated exactly).
The cubic interpolant is smoother with an overshoot
and undershoot that is about half the amplitude of
that for the quadratic interpolant but which extends
about twice as far (i.e. a whole lattice spacing h before
and after the discontinuity). Figure 13 shows the cor-
responding result for a lattice width h = 0.00625. The
results, as one would expect, are similar to the previ-
ous comparison showing overshoots and undershoots

(49)

[N NI



Figure 12: Interpolated function values of ¢(z,y) at y =
0.5 for a lattice width of h = 0.025

T
X

Figure 13: Interpolated function values of ¢(z,y) at y =
0.5 for a lattice width of h = 0.00625

of comparable magnitude and extending the same dis-
tance when scaled by the lattice spacing.
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